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AN INVERSE METHOD TO MEASURE THE AXIAL MODULUS 
OF COMPOSITE MATERIALS UNDER TENSION 

1.    INTRODUCTION 

Measuring the stiffness and loss properties of materials is extremely important because 

such properties significantly contribute to the dynamic response of a structure. Resonant 

techniques to measure stiffness and loss have been used by researchers for many years [1-4]. 

This approach is based on measuring the eigenvalues of a structure and comparing them to 

eigenvalues of a model of the same structure. During the comparison, stiffness and loss 

properties are identified. However, the structure must have well-defined eigenvalues and 

eigenvectors for the method to be successful. Bars that are placed under tension with masses 

or ropes do not have closed-form eigenvectors, and their eigenvalues must be calculated with a 

transcendental equation. Additionally, this test only allows measurements at resonances. 

Material testing machines [5-7], which are designed to excite pieces of materials in a manner 

that allows investigation of stiffness and loss, provide yet another measurement tool. 

However, the typically small test samples cannot be subjected to significant tensile forces 

because of their size. Comparison of analytical models to measured frequency response 

functions is another approach for measuring stiffness and loss parameters [8-14]. It is 

unfortunate that most of these methods tend to be computationally intensive, and the fitting 

routines do not always converge to the correct answer, especially when more than one 

unknown parameter of the model must be estimated. 

In this report, an inverse method is derived to measure the axial modulus of bars under 

tension. This method is intended for use primarily on long composite structures whose axial 

modulus is tension (and frequency) dependent. Such tension dependency is usually a result of 

the load share shifting from one material to another or a change in material rigidity when the 

structure is subjected to a tensile force. The governing differential equations of a bar with 

displacement input at one end and terminated to ground with a mass, spring, and damper at the 

other end are solved to yield a model of the displacement and force in the bar. The force and 

1 
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displacement equations are then written to correspond to three sensor transfer functions. These 

three equations and the corresponding data are next combined to yield a closed-form value of 

the axial modulus (including a loss term) at each frequency where a measurement was made. 

The model is then computed with the measured moduli and is compared to the data. 

Use of this model with the inverse method corresponds to the physical testing 

configuration in the Axial Vibration Test Facility (AVTF) at the Naval Undersea Warfare 

Center (NUWC), Detachment New London, as shown in figure 1. The AVTF has been 

designed to provide a simple procedure for testing bars under varying tensions and 

temperatures. The longitudinal shaker at the forward end of the bar provides axial excitation to 

the structure. A rope attached to the aft end of the bar and to a tension drum allows the tension 

to be adjusted. A mass is attached between the bar and the rope to ensure that the impedance 

change at the end of the bar is sufficiently large to allow accurate modeling of the rope behavior 

by a spring and damper rather than by a continuous media expression. The entire unit is 

surrounded by an air-conditioned PVC duct to permit temperature-dependent testing. 

Impedance heads are attached to the forward and aft ends of the bar to collect data during a test. 

Each impedance head consists of a single force transducer and accelerometer. A load cell that 

measures the tension on the structure is located between the rope and the mass. Although the 

test and inverse method were designed primarily for materials with "tension only" behavior, 

there is no requirement that the material undergoing the test exhibit this characteristic. 

Impedance 
Head Bar 

Longitudinally 
Configured 

Shaker 

V////////A 

Impedance Spring, £ 

Head , V^^-% 

Damper, 

Figure 1. Laboratory Configuration 
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2.   SYSTEM MODEL 

The system model is a longitudinal bar with a displacement-driven boundary condition 

at one end and a mechanically grounded spring and damper at the other. There is a point mass 

attached between the bar and the spring and damper. The governing partial differential 

equation on the domain of the bar is the wave equation and is expressed as 

d2u(x,t)     2^2u(x,t) _n /JN 

dt2 dx2 

where u(x,t) is the axial displacement (m), x is the spatial location (m), t is time (s), and c is the 

wave speed (m/s). The wave speed is equal to 

c = ß, (2) 

where E is the axial modulus (N/m2) and p is the density of the bar (kg/m3). The energy 

attenuation in the bar is defined with a structural damping law and therefore the modulus is a 

complex number. Note that a structural loss law requires that any solution obtained be in the 

frequency domain represented by 

u(x,t) = U(x)eicot , (3) 

where U(x) is a spatial displacement function (m), i is the square root of -1, and 0) is frequency 

(rad/s). Additionally, the wave speed in the bar becomes a complex number. The real part of 

the wave speed corresponds to energy transmission and the imaginary part corresponds to 

energy attenuation. 

The longitudinal shaker is modeled as a harmonic boundary condition in the axial 

direction at x = 0 as 

u(0,t) = UQeicot , (4) 

where UQ is the amplitude of the displacement at the boundary (m). The mass and termination 

rope are modeled as a boundary condition at x = L by a point mass attached to a parallel spring 

and viscous damper connected at one end to the bar and at the other end to mechanical ground 
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(zero displacement). This equation is derived as follows by equating the longitudinal force at 

the end of the bar to the forces in the mass, damper, and spring: 

AEMi^ = _jMLj)_bM^ (5) 

dx dt2 dt 

where A is the cross-sectional area of the bar (m2), m is the point mass (kg), b is the viscous 

loss coefficient of the damper (Ns/m), and | is the spring constant (N/m). 

The steady-state displacement U(x), normalized by the input displacement U0, is [15] 

u(x)    [AEik -S + mco1- bico]e-ikiL-x) + [AEik + ^-mco2 + bico]eikiL-x) 

~Ü^~ ~       [AEik + £ - met)2 + bia>ykL + [AEik -% + mco2 - bico\e~lkL 

and the steady-state force Fix), normalized by the input displacement UQ, is 

F(x)    AEik{[AEik -Z + mco2- bico}e-ik(L~x) - [AEik + ^-mco2 + bico]elk{L-x)) 

~ÜÖ~ ~ [AEik + %- mco2 + bia>ykL + [AEik - £ + mco2 - bico\e~lkL 

where k is the complex-valued extensional wavenumber of the structure (rad/m) defined by 

k = ^. (8) 

(6) 

(7) 

c 

The known parameters in equations (6) and (7) are the point mass m, the density of the bar p, 

the cross-sectional area of the bar A, and the length L. The inversion of equations (6) and (7) 

at the sensor locations will allow for a measurement of the unknown axial modulus E, spring 

constant £ and viscous loss coefficient b. This technique is described next. 

3.   INVERSION OF THE SYSTEM MODEL 

The experiment has four sensors to collect data that are in the form of transfer functions 

between pairs of sensors; thus three independent measurements are possible. The three 

transfer function measurements are the forward displacement divided by the aft displacement, 

the forward force divided by the aft displacement, and the forward displacement divided by the 

aft force.   Their theoretical form can be rewritten using equations (6) and (7) and the 
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relationships between the exponential and trigonometric functions. These transfer functions are 

the theoretical form of the measured frequency domain data. Denoted 7\, T2, and T3, they are 

expressed as 

2 I/o ,1T.    (%-mct)  +bico) .       .    „ (Qs 
—Ü- = cosikL) + — sm(&L) = 7\ , W 
U(L) AEk 

^- = AEksin(kL) - (£ -mco1 + bico)cos(kL) = T2 , (10) 
U(L) 

and 

UQ -cos(kL) sin(fcL) _ Q^ 

~F\L)~ (%-mco2 + bicD)      AEk   ~   3 ' 

The mass-damper-spring term can be solved for by dividing equation (9) by equation (11) 

which yields 

E-mco1 + bico = ^L . (12) 

Because of their relative size, the magnitudes of T2 and T3 are now changed based on 

equation (12). For most experiments, Tx is of order 1, T2 is of order 105, and T3 is of order 

10"5. To reduce numerical errors, it is desirable to have all the data values of the same relative 

magnitude, which is accomplished by dividing equation (10) by equation (12), multiplying 

equation (11) by equation (12), and leaving equation (9) unchanged, resulting in 

cos(JfcL) + — sm(kL) = 7\ = i?x , (l-*; 
AEk 

 ^S sin(£L) - cos(kL) = -^ = R2 , (14) 
(%-mcoi+bico) n 

and 

,,r.    (B-mco  +bico) . nT.      „     v HM 
-cos(kL) - — sm(kL) = -T\ = #3 . U->; 

AEk 

Equation (13) is now rewritten as 
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ALL -^~ mC°2 + bico^sin^kL) (16) 
Rl - cos(kL) 

and equation (14) is rewritten as 

(g - mco2 + bico)[R2 + cos(feL)] (17) 
AEk — . • v    / 

sin(£L) 

Equating equations (16) and (17) and applying a Pythagorean relationship produces 

cos(itL) = cos{[Re(ife) + /Im(A:)]L} = ^^- = 0 , (18) 
K2-Ki 

where 0 is a complex number, Re denotes the real part of k, and Im denotes the imaginary part 

of k. Using an angle-sum relationship on the cosine term in equation (18) and separating the 

equation into real and imaginary parts yields 

cos[Re(fc)L]cosh[Im(Ä:)L] = Re(0) (19) 

and 

sin[Re(*)L]sinh[Im(*)L] = -Im(0) . (20) 

Equation (15) is now rewritten as 

= -^-mco^bico) = -^-mco^bico)^m (21) 

[R3+cos(kL)] (R3 + <t>) 

The right-hand side of equation (21) is now set equal to the right-hand side of equation (17), 

which produces 

sin(fcL) = sin{[Re(*) + iIm(*)]L} = ±J(-1)(R2 + M*3 + 0) = * V . (22) 

where yfis a complex number and the sign of equation (22) is determined below. Using an 

angle-sum relationship on the sine term in equation (22) and separating the equation into real 

and imaginary parts yields 

sin[Re(fc)L]cosh[Im(fc)L] = Re(y/) (23) 

and 

cos[Re(ifc)I]sinh[Im(*)L] = Im(vO . (24) 
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Combining equations (19) and (23) yields 

Re(£) = — arctan 
Re(v0 +HE. (25) 

L   ' Rety) 

where n is an integer greater than or equal to zero and is determined as shown below. 

Combining equation (20) and equation (23) yields 

mk) = ^oJ  ™^L}\ . (26) 
L   5e[Re(y/O + Im(0)J 

Now that the real and imaginary parts of the wavenumber k are known, the complex-valued 

modulus of elasticity can be determined at each frequency with 

2 

E = Re(£) + / Im(£) = ^ -y • (27) 
[Re(ifc) + /Im(ik)f 

The signs of E are used to determine the sign of y^and the value of n. Note that Re(£) 

and Im(£) are strictly positive by definition. To ensure this condition, equation (27) will only 

be valid when Re(fc) is greater than zero and Im(fc) is less than zero. The minimum value of 

Re(k) greater than zero requires that 

0<—arctan 
L 

'Re(v) <fL. (28) 
L .Re(0) 

If the condition listed in equation (28) is violated, then mnIL (where m is an integer) must be 

added to the middle term of equation (28) to make the inequality hold. The integer n is now set 

equal to zero. Next, Im(fc) less than zero requires that 

Q<   sin[Re(fc)L]    ^ (29) 
Re(y/) + Im(<p) 

For the right-hand side inequality to hold, it is necessary for 

| Re( y0 + lm(0) | > | sin[Re(*)I] | . (3°) 

If this inequality is not valid, then the sign of i/^must be changed and Re(fc) in equation (25) 

must be recalculated. For the left-hand side inequality in equation (29) to hold requires that 
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sin[Re(£)L]   ^ Q (31) 

If this condition is violated, then nIL must be added to Re(£) to change the sign of the 

numerator in equation (31). Finally, either equation (9), (10), or (11) has to be solved with the 

estimated values of E (and k) to determine if the theoretical transfer function matches the data. 

If it does not, the integer n has to be increased by adding two, and the inequality checks in 

equations (29), (30), and (31) must be repeated. 

4.    EXPERIMENT 

An experiment was conducted to validate the inverse method. A polyurethane bar with 

longitudinal polyester stiffeners was placed in tension as shown in figure 1. The bar had a 

density of 1100 kg/m3, a cross-sectional area of 2.63 x 10-4 m2, and a length of 35.7 m. It 

was placed under 890 N of tension, with a point mass weight of 13.6 kg. The data from the 

force transducers and accelerometers were taken with an HP3562 dynamic signal analyzer. 

The analyzer converts the raw data from the time domain to the frequency domain. The test 

was run with a frequency range between 4 and 100 Hz. The data were collected with a 

logarithmic weight in frequency; however, for clarity, they are displayed with a linear 

frequency scale. The data that were collected with accelerometers must be changed to 

correspond to displacements because the transfer functions derived above were developed 

using displacement-based relationships. This is accomplished by dividing the accelerometer 

data by -co2. 

The first step was to determine the stiffness and viscous loss coefficient of the 

termination rope by applying equation (12) to the data. Analysis of equation (12) shows a 

single minimum of the transfer function. The data to the left of the transfer function minimum 

are stiffness dominated and were used to evaluate the stiffness of the rope. The following 

equation, derived from the real part of equation (12), was used: 
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1   N 

£ = -£ mcOj - Re 
rTx{co^ 

r3«»y) 
(32) 

where N is the total number of data points to the left of the minimum and; is a counter that 

corresponds to each frequency and data point at that frequency. This calculation produced a 

model stiffness of 33600 N. The viscous loss coefficient was determined using the imaginary 

part of equation (12) as 

b = — Im 
0)r 

Ti((Qr) 

T3(cor)] 
(33) 

where cor corresponds to the resonance frequency of the spring-damper-mass system, which is 

also the transfer function minimum (fr = 9.55 Hz). This calculation resulted in a viscous loss 

coefficient of 31.8 Ns/m. The data to the right of the transfer function minimum are not used 

to extract any system parameters because they are mass dominated. However, the estimated 

transfer function is compared to the measured transfer function at these points. Figure 2 is a 

plot of the data [-7\(<y) / r3(fi>)] and the model (£ - mco2 + bico) fit to the data. Physically, 

this shows the (negative) aft force divided by the aft displacement. The solid line depicts the 

model and the X's depict the data. Note that, for this example, the model fits the data 

everywhere, even in the region where the system response is mass dominated. Additionally, 

the spring constant and viscous loss coefficient are well modeled by constant values in 

frequency. 

Equations (13)-(31) were applied to the data, and the resulting axial modulus of the 

material was found. Figure 3 is a plot of the axial modulus versus frequency. The upper plot 

is the real part of E and the lower plot is the loss factor (Im(£)/Re(E)). The data are shown 

with X's and an ordinary least square (OLS) straight-line fit is shown with the solid line. The 

data points at resonance that are yielding extremely large and small values of the modulus were 

not used in computing the OLS straight-line fit . Although a straight line was fit to the 

extracted modulus for this case, it is not necessary to use a linear estimate of the modulus. For 
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some materials it is likely that a polynomial fit to the modulus will produce more accurate 

results. 

Figure 4 is a plot of the aft displacement divided by the forward displacement, which 

corresponds to the term \ITX from equation (9). Figure 5 is a plot of the forward force divided 

by the aft displacement, which corresponds to the term T2 from equation (10). Figure 6 shows 

the aft force divided by the forward displacement, which corresponds to the term 1/T3 from 

equation (11). In figures 4, 5, and 6, the solid line is the model computed with a modulus 

value determined using the OLS method of figure 3. The model is depicted using a solid line 

and the data are shown using X's. For all three transfer functions, there is reasonable 

agreement between the data and model. As the frequency increases, there are slight variations 

between the model and the data. It is believed that these variations are caused by a phase 

mismatch between sensor pairs during the measurement process. 

10 
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Figure 2. Transfer Function of Aft Force Divided by Aft Displacement With 
Model Depicted as Solid Line and Experimental Data as X's 
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Figure 3. Real Part of Axial Modulus and Corresponding Loss Factor With OLS 
Straight-Line Fit Depicted as Solid Line and Discrete Data as X's 
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With Model Depicted as Solid Line and Experimental Data as X's 
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Figure 5. Transfer Function of Forward Force Divided by Aft Displacement 
With Model Depicted as Solid Line and Experimental Data as X's 
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5.    CONCLUSIONS 

The axial modulus of a tensioned bar can be calculated from the forward force 

transducer, forward accelerometer, aft force transducer, and aft accelerometer data. The 

method yields a value for the modulus at every frequency for which data are collected. The 

frequency domain values of the modulus can be fit with a curve, and the model can be 

recalculated with this estimate of the modulus. It was shown that this approach provides a 

good match between experimental data and the model. 
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